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Introduction:  Research in planetary seismology is 

fundamentally constrained by a lack of data. Seismo-

logical science products of future missions can typical-

ly only be informed by theoretical signal/noise charac-

teristics of the environment [1] or likely Earth-

analogues [2]. Although objectives can be re-assessed 

after some initial data-collection upon lander arrival, 

transfer of high-resolution data back to Earth is costly 

on lander power usage.  

Over the last several years, development of GPU 

computing techniques and open-source high-level APIs 

have led to rapid advances in deep learning within the 

fields of computer vision, natural language processing, 

and collaborative filtering. These techniques are active-

ly being adapted in seismology for a variety of tasks, 

including: earthquake detection [3], seismic phase dis-

crimination [4], and ground-motion prediction [5].  

 Until the recent detection of marsquakes during the 

Mars InSight mission, the only other measurements of 

seismicity recorded outside of Earth was on the Moon 

during the Apollo missions between 1969 to 1977 [6]. 

These unique datasets have been periodically revisited 

using new seismological methods, including ambient 

noise interferometry [7] and Hidden Markov Models 

[8].  

Our objective is to develop a deep learning seismic 

detector and use it to catalog moonquakes from the 

Apollo 17 Lunar Seismic Profiling Experiment (LSPE) 

and compare the results with those obtained by other 

methods. Additionally, we will assess the accuracy 

tradeoff between using a training set of lunar data and 

one composed of Earth seismicity. In this document, 

we present preliminary results using a prototype classi-

fier trained on a small set of earthquakes that was able 

to obtain detections for LSPE moonquakes with a 

greater accuracy than a recent study using Hidden 

Markov Models [9].  

 

Methodology: We built a prototype deep learning 

classifier that was able to distinguish between seismic 

activity and noise through examples of spectrogram 

images for each category recorded on Earth. This pro-

cess will be expanded to two classifiers, one using a 

more comprehensive arrangement of Earth seismic data 

and the other using moonquakes and lunar seismic 

noise.  

Earth seismic data was downloaded using the IRIS 

utility PyWeed in a time window around the earthquake 

first arrival. For the prototype classifier, we used an 

interval of 180 seconds before and 20 seconds after the 

P-wave arrival of earthquakes greater than Mw 3 from 

the Piñon Flats Observatory (PFO) seismic station [Fig. 

1].  

 

Figure 1: Time series [A] and spectrogram [B] of a Mw 

3.7 earthquake at PFO.  

 

Data augmentation is a technique in computer vi-

sion where new images are created by modifying exist-

ing data [10]. In image recognition, this is typically 

done by cropping, zooming, or rotating images. How-

ever, applying data augmentation in this manner will 

decrease the accuracy of our model, as cropped spec-

trograms may omit valuable information in the low or 

high frequencies. Instead, we chose twenty sliding 

windows across the noise and earthquake segments 

with one second overlap starting at 0 seconds for the 

noise and at 81 seconds for the earthquake (19 seconds 

prior to the onset of the P-wave at 101 seconds). A 

total of 27,800 spectrograms were used in the proto-

type, approximately 20% of which (5240) were sepa-

rated into a validation set..  

The prototype was built using the fastai computer 

vision library [10] with a batch size of 16 and image 

reduction to 224x224 pixels. Three training cycles 

were conducted on the data with a learning rate of 1e-

2, which took approximately 18 minutes on a laptop 

with an NVIDIA Quadro M1200 GPU (4 Gigabytes of 

video memory). We used the ResNet 34 CNN architec-

ture [11] for this prototype, but we will determine an 
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optimal and unique architecture using best practices 

from literature for the full experiment. 

 

 
Figure 2: Time series [A] and spectrogram [B] of a 

moonquake recorded on February 11th 1977 during the 

Apollo 17 LPSE.  

 

Preliminary Results: The prototype model ob-

tained 94.5% accuracy on the 5240 element validation 

set after three rounds of training (training duration was 

approximately 6 minutes per round). The loss for the 

training and validation sets is the summation of the 

errors in the cross-entropy, also known as the negative-

log likelihood [10]. Additional rounds only reduced the 

training loss but not the validation loss, which suggests 

that further training overfits the data. 

This model was applied to a 2.5 hour data segment 

collected by the LSPE on February 11th. Two pre-

processing steps were necessary to account for differ-

ences between the Earth-trained model and the lunar 

data: (1) the moonquake signal is much weaker in 

power compared to earthquakes and had to be capped 

at 1e-6 counts2/Hz, and (2) a 10 Hz highpass filter was 

applied to remove low-frequency lunar noise. The clas-

sifier found a total of five detections after a running 

time of approximately 20 minutes. The obtained detec-

tions are generally of equal quality or more accurate 

than the results obtained using Hidden Markov Models 

and do not contain any false detection. However, the 

classifier appears to have difficulty detecting the short-

er duration signals that occur in the last hour of the 

record [Figure 3]. We will build a new model using a 

unique architecture and comprehensively quantify the 

number of moonquakes in the Apollo 17 LSPE dataset. 

The same experiment will be repeated using a new 

model trained from lunar seismic data, and we will 

assess the accuracy tradeoff from using non-local train-

ing data.    

 

 
Figure 3: Detection comparison between the Hidden Markov 

Model study [9] [A, black lines] and the deep learning proto-

type developed for this proposal [B, C, red lines].  
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